Synthesis of Covalent Organic Frameworks Based on Squarine Dye and Quinoid Form of Thiophene Having Donor-Acceptor Properties

Onur Yildirim, Andrea Fin, Guido Viscardi and Claudia Barolo*

a Department of Chemistry and NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin, Via Pietro Giuria 7, 10125/Torino, Italy
b Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125/Torino, Italy
c ICxT Interdepartmental Centre, Lungo Dora Siena 100, 10153/Torino Italy
*E-mail: claudia.barolo@unito.it

Covalent organic frameworks (COFs) are a class of crystalline organic porous materials. COFs are generally studied for gas storage and catalysis, but their optoelectronic and energy storage properties have been also explored. For example, thiophene-based COFs, synthesized starting from highly conjugated linkers, have shown semiconducting and luminescent properties.

Our research aims at the synthesis and properties evaluation of new thiophene-based conductive COF. The synthetic strategy involves the condensation between tritopic linkers (i.e. tris(4-thiophene-2-yl)phenyl)amine) and ditopic linkers (i.e. terephthalaldehyde) generating a methine bridge. In parallel, COF optoelectronic properties to structure relationship will be investigated by creating a new COF library, coupling the squaric acid with a series of tritopic linkers such as tris(4-aminophenyl)amine [TAPA], tris(4-aminophenyl)methane [TAPM], tris(4-aminophenyl)benzene [TAPB], and tris(4-aminophenyl)Triazine [TAPT].

Figure 1. (a) Structure of quinoid-methine-based covalent organic framework (b) Squarine-based covalent organic framework

References: